Technical Proposal

SPECIALTY GAS CABINET SYSTEM

Maximum Safety, Efficiency, Reliability and Ultra High Purity Solutions

(꾸) 낀 솔루션

1. Gas Cabinet System?

Gas Cabinet System is the system to store specialty gas cylinders safely and deliver proper volume and pressure of specialty gas to distribution systems (VMB and VMP) or Main Tool (POU, Point of Use) for Semiconductor, FPD, LED, Solar Cell manufacturing process.

- **Gas Cabinet Type :** Single, Dual, Bundle, BSGS, Bulk type available
- **Operational Controller Type**
 - 1. Full Automatic Type Gas Cabinet
 - 2. Semi Automatic Type Gas Cabinet
 - 3. Manual Type Gas Cabinet
- **Controller Image by Type**

Full Automatic Controller

Semi Automatic Controller

2. Standard Model Specification

Gas Cabinet System

System Type: Full automatic System

- 1. 2-cylinders 1-process out
- 2. Automatic Switchover (= Automatic Changeover) type
- 3. Automatic Purge / Self Leak Check

Dimension

- 1. Standard Type: 796mm x 550mm x 2320mm
- 2. Special Type: 1000mm x 600mm x 2320mm (for explosion proof)
- **Weight**: 270 kg
- **Power Source :** 110~220VAC, 50~60Hz, Single Phase
- Power Consumption: 1 Kw (2.5 Kw with Heating Controller)
- Pneumatic Control: 70~90 psig CDA or N2 CDA or N2
- **III** Enclosure Exhaust Size : 4"

Safety Options

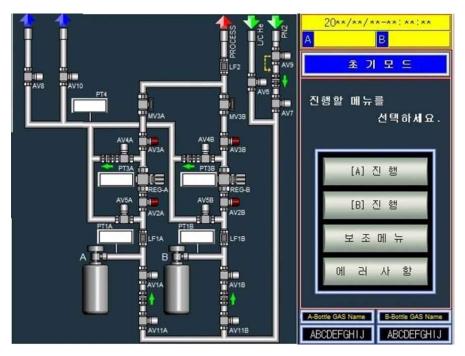
Valve Shutter, Weight Scale, UV/IR Sensor, High Temperature Sensor, Sprinkler, Gas Leak Detector, Smoke/Fire Sensor, Line Heater, Heating Jacket, Heating Controller, Auto Guard, Exhaust Damper, Excess Flow Switch, Z-Purge Sensor, Door Sensors, etc.. Available!

3. System Function Specification

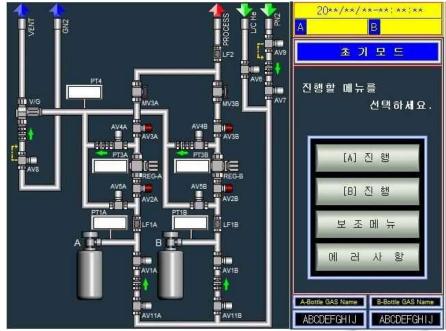
Safety

- 1. Safe and stable Delivery of Process Gas
- 2. Customized Interlocks
- 3. Reliable & High Performance PLC Based System
- 4. Emergency Shutdown

Software & Function

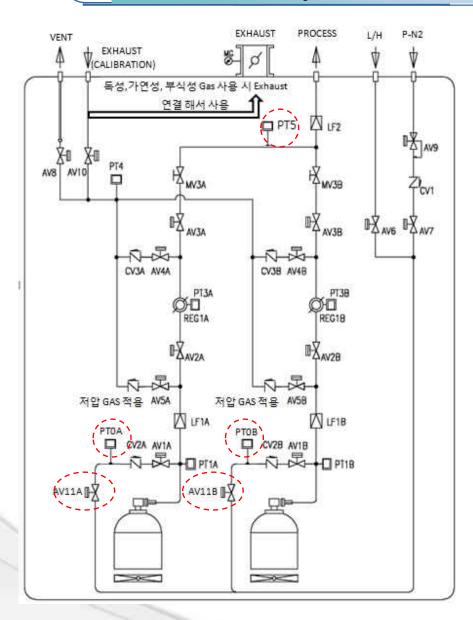

- 1. Automatic Auto Purge / Self Leak Check
- 2. Automatic Switchover (Auto Changeover)
- 3. Easy to Use Color LCD Touch Screen
- 4. User Friendly Interface
- 5. International Language (English) Support
- 6. Valve On/Off Counting
- 7. Password Protected (User & Supervisor Mode)

United States Others


- 1. Lower Cost-of-Ownership
- 2. Short Lead Time
- 3. Easy Installation / Excellent Maintainability

4. Main Touch Screen of Gas Cabinet

Vacuum Pump Vent Type Gas Cabinet



Vacuum Generator Vent Type Gas Cabinet

5-1. R&D for Safety & Convenience

AV11A/B Application (Option)

To protect gas mixing accident of Process Gas and Purge N2 by by-passing of AV1A/B.

PTOA/B Application (Option)

To check by-pass condition of AV1A/B and AV11A/B during purge sequence..

PT5 Application (Option)

- 1. To check Regulator Fail which is obstructed.
- 2. To check delivery side PT working condition (PT3A/B).
- 3. To check backward stream of gas from main tool.
- 4. To check gas line leak condition by monitoring PT3A/B and PT5 simultaneously. If the pressure difference between PT3A/B and PT5, system recognizes as gas line leakage.

5-2. R&D for Safety & Convenience

3D Touch Screen

To provide user friendly operational environment such as 3-dimensional schematic of touch screen for easily checking Gas Cabinet working condition.

PPE Setting and Display function by specialty gas

- Can select PPE list by gas on the configuration setting mode.
- Can display PPE list on touch screen on Gas Cylinder Change mode.

Short Message Service (SMS)

- To provide Warning/Emergency message over SMS of mobile phone in the case of Emergency of the gas cabinet system.

■ Pulse Vent

To protect parts of gas panel and reduce parts damage, system performs 'pulse vent' to vent high pressure remaining process gas by opening/closing AV4 and AV2 alternatively.

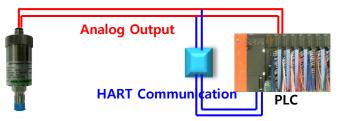
Personal Protective Equipment

5-3. R&D for Safety & Convenience

Barcode System

- Barcode provides cylinder information such as gas refill date, validity, LOT Number, etc..
- Provides Alarm for cylinder validity..
- If user installs incorrect cylinder, system recognizes it and gives an alarm.

Huntingless PT Sensor Application and Test (on Testing..)


- Accuracy : 0.25%
- Self-Test & Diagnosis Function
- Zero calibration by button to provide on-site convenience

Non-Stop Supplying System

- To protect stop providing process gas in the case of malfunction of gas cabinet safety options, such as H/T Sensor, U/V Sensor, Leak Detector, EMO.
- Continue to provide N2 to open air valve in the case of malfunction of gas cabinet safety options or no Power Supply (24V).

6. Valve Interlock for Safety

Enable to OPEN OPEN Condition	AV1	AV2	AV3	AV4	AV5	AV6	AV7	AV8	AV9	AV10	Remarks
AV1	•	•	\Diamond			•	•	•	•	•	
AV2	•	•	•			•	•	•	•	•	
AV3	\Diamond	•	•	\Diamond		•	•	•	•	•	
AV4	•	•	\Diamond	•		•	•	•	•	•	
AV5	•	•	•		•	•	•	•	•	•	
AV6	•	•	•			•	\Diamond	•	•	•	
AV7	•	•	•			\Diamond	•	•	•	•	
AV8	•	•	•	•	•	•	•	•	•	\Diamond	
AV9	•	•	•			•	•	•	•	•	
AV10	•	•	•			•	•	\Diamond	•	•	

• : Open

♦ : Not Open(Interlock)

■ : Prior to open a valve, AV8 should be opened firstly

	Section		Enable to OPEN										
	Section	AV0	AV1	AV6	AV7	AV9	AV11	AV8	AV10	AV2	AV3	AV4	AV5
	Pre Purge	Х	0	Х	0	0	0	0	Х	0	Х	0	0
	Change Cylinder	Х	0	Х	0	Х	0	Х	Х	Х	Х	Х	Х
MODE	Post Purge	Х	0	0	0	0	0	0	Х	Х	Х	Х	0
WIODE	Calibration Mode	Х	0	Х	0	0	0	0	0	Х	Х	0	0
	Stanby Mode	0	Х	Х	Х	Х	Х	Х	Х	0	Х	Х	Х
	Supply Mode	0	Х	Х	Χ	Х	Х	Х	Х	0	0	Χ	Х

7-1. Explosion Proof Options

Explosion Proof Pressure Transducer

1. Application Area: Zone 1, Zone 2

2. Explosion Proof Grade: Ex d IIC T4

3. Registration Number: 13-GA2BO-0209

4. Certification Institute: Korea Gas Safety Corporation

Explosion Proof Weight Scale


1. Application Area: Zone 1, Zone 2

2. Explosion Proof Grade: Ex ia IIC T4

3. Registration Number: 13-KB2BO-O557X

4. Certification Institute : Korea Testing Laboratory

Explosion Proof UV/IR Sensor

1. Application Area: N/A

2. Explosion Proof Grade: Ex d IIC T6

3. Registration Number: 12-AV2BO-0269X

4. Certification Institute: Korea Occupational Safety & Health Agency

7-2. Explosion Proof Options

Explosion Proof Gas Detector

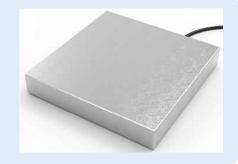
1. Application Area: N/A

2. Explosion Proof Grade: Ex d IIB+H2 T6

3. Registration: 13-GA2BO-0154

4. Certification Institute : Korea Gas Safety Corporation

8-1. Gas Cabinet Safety Options


VALVE SHUTTER

- Automatic shut-off device which is installed on the head of Gas Cylinder.
- In the case of occurring Emergency situation during Gas Stand-by or Gas Supply, it automatically closes the shut-off valve on the cylinder head.

WEIGHT SCALE

- Device to check remaining gas volume by weight for low-pressure gas or liquefied gas.
- It notifies automatic switchover point for liquefied gas.

UV/IR SENSOR

- Device for high speed detecting by UR/IR sensor instead of fire detector.
- It detects sparks or flame and then shutdown gas cabinet system to stop supplying process gas for safety.

HIGH TEMPERATURE SENSOR

- To detect high temperature inside of gas cabinet by fire.
- It detects high temperature inside of gas cabinet and then shutdown gas cabinet system to stop supplying process gas for safety.

SPRINKLER

- Device to provide water to extinguish fire in the case of detecting over 72 °C temperature of inside of Gas Cabinet by fire or other some reasons.

GAS LEAK DETECTOR

- Device to prevent serious accidents which might be caused by unexpected gas leaks by detecting a variety of gases in gas cabinet system for the process of producing or consuming flammable gases and toxic gases.

8-3. Gas Cabinet Safety Options

SMOKE/FIRE SENSOR

- Device to detect smoke in the case of fire inside of gas cabinet by explosive and flammable gas.
- It detects smoke and then shutdown gas cabinet system to stop supplying process gas for safety.

HEATING LINE

- Gas Line (SUS Tube) heating device to increase gas volume of liquefied gas and provide process gas at stable pressure and flow.
- It is suitable for low-pressure and liquefied gas.

HEATING JACKET

- Gas Cylinder heating device to increase gas volume of liquefied gas and provide process gas at stable pressure and flow.
- It is suitable for low-pressure and liquefied gas.

8-4. Gas Cabinet Safety Options

AUTO GUARD

- When properly installed and operated, Auto Guard connection cover enhances specialty gas operations by preventing accidental disconnection of a hazardous gas cylinder from CGA pigtail of gas cabinet system.
- It is suitable for explosive and toxic gas cylinder.

EXHAUST DAMPER

- To protect users from any gas leak such as hazardous gas or fumes of internal utility of gas cabinet system.
- The cabinet must be connected to a properly designed exhaust system that is continuously operated in order to provide a safe environment.

EXCESS FLOW SWITCH

- If the flow rate of process gas line is exceeded some level, it gives signal to PLC to make warning for user notification.

8-5. Gas Cabinet Safety Options

Z-PURGE SENSOR

- Device checks N2 pressure and provides pressurized N2 to protect fire and explosion by spark inside of operational controller in the case of explosive or flammable gas leak.
- By making a little more high pressurized condition by N2 inside of controller, it protects inflow of leaking gas from outside of controller.

DOOR SENSOR

- Device to check door open/close condition for Gas Cabinet Door or Controller Door.
- If Gas Cabinet Door or Controller Door is opened, Warning pop-up message displays on the touch screen and makes a beep sound to notify.

POWER OUTAGE/DIP PROTECTION DEVICE

- Device to supply power stably by protecting magnetic Contractor's trip in the case of voltage sag (dip) or interruption (outage)
- No battery needed to operate and no maintenance required.

9-1. Operational Sequence

1st STEP
1st Purge
before cylinder
change

2nd STEP Vacuum Leak Test

3rd STEP
2nd Purge
before cylinder
Change

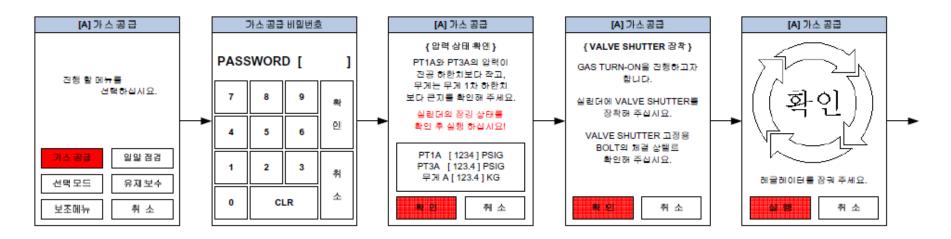
4th STEP Cylinder Change

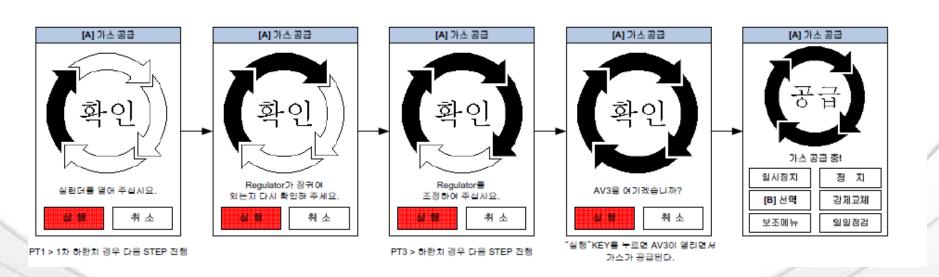
5th STEP 1st Purge after cylinder Change

6th STEP Pressurized Leak Test

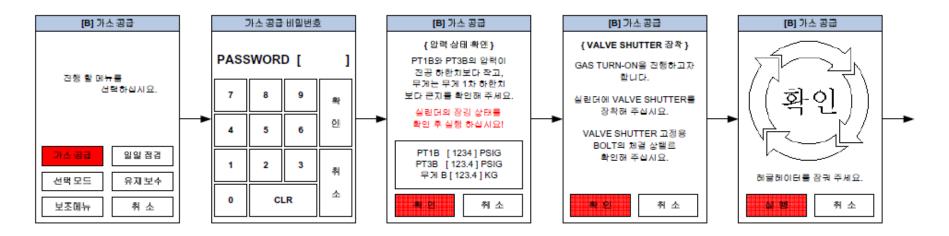
7th STEP 2nd Purge after cylinder Change

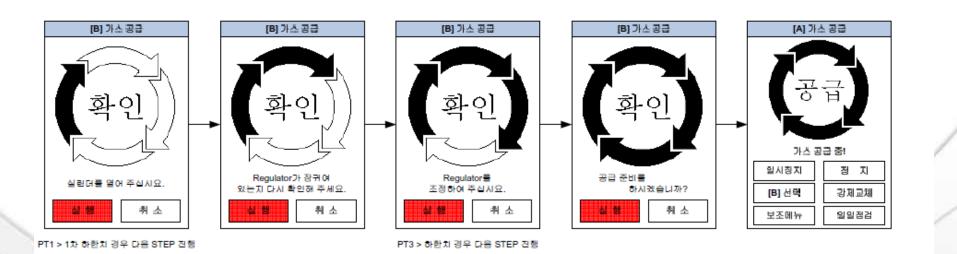
8th STEP Purge Completion

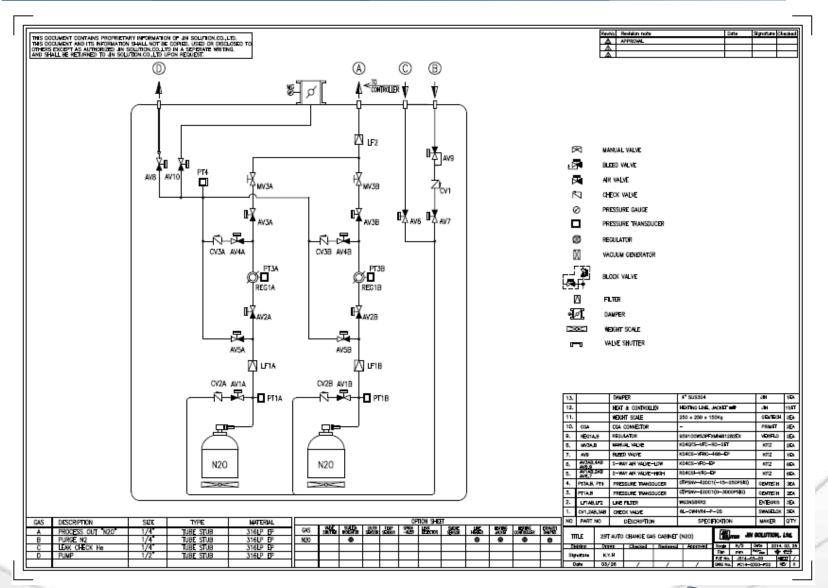

9th STEP
Gas Supply
Preparation



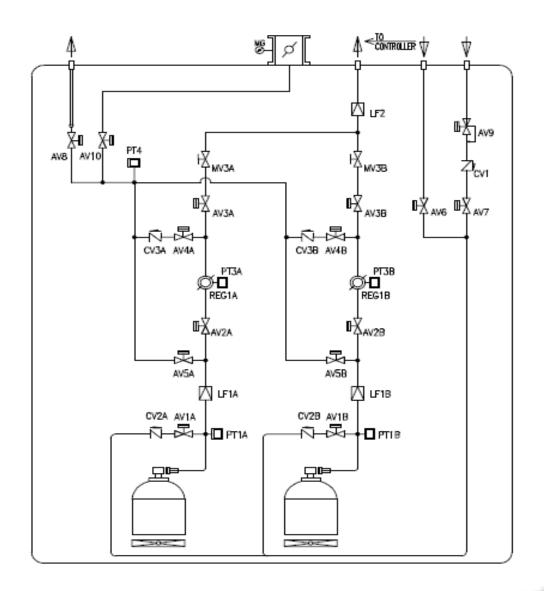
10th STEP Gas Supply / Stand-by

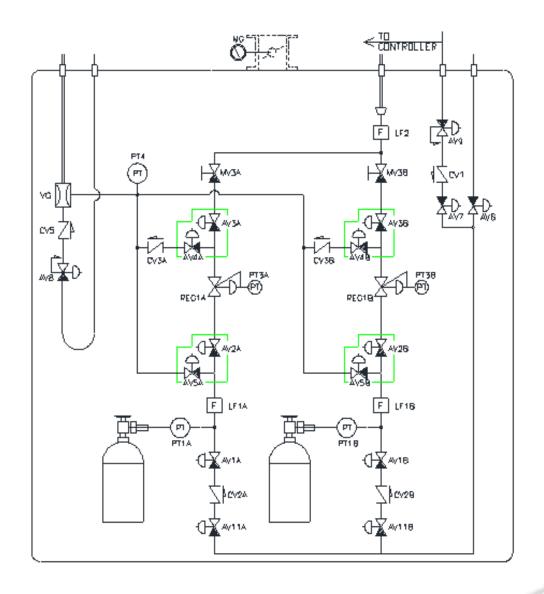

Safe & Reliable
Process Gas Delivery
to Main Tool!


9-2. Purge Completion → Gas Supply



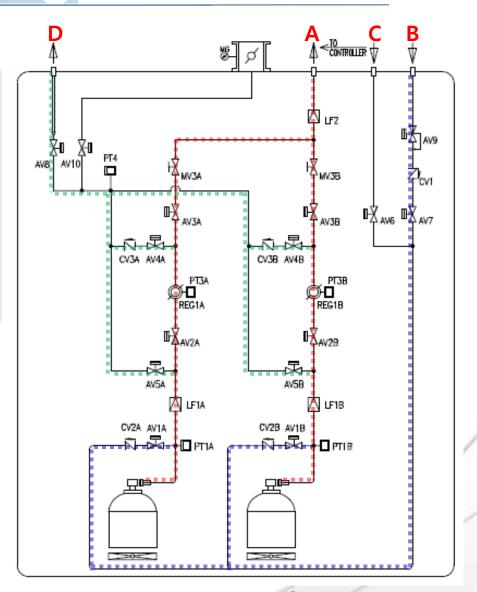
9-3. Purge Completion → Stand-By



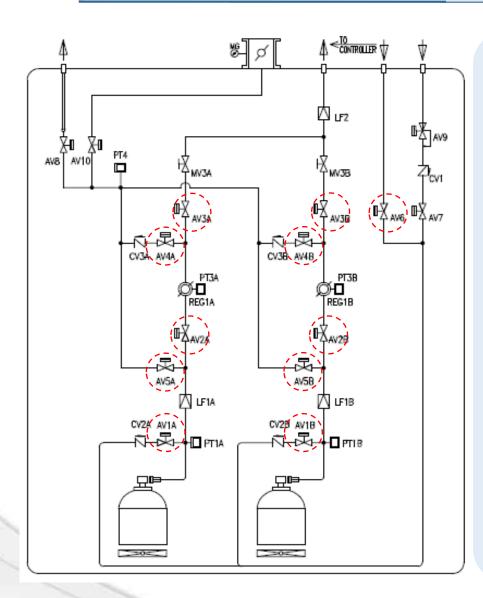

10-1. Gas Cabinet Schematic Drawing

10-2. Pump Vent Type Gas Cabinet

10-3. V/G Vent Type Gas Cabinet


10-4. Utility & Gas Line for Gas Cabinet

- **A** Process Out: Gas Line for delivering Process Gas to VMB/P or Main Tool.
- B Purge 'N2': Gas Line for purging Process Gas by N2 (Nitrogen) during purge sequence.
- **C** Leak Check 'He': Gas Line for supplying He (Helium) gas to check the pressurized leak test.
- D Vent: Gas Line for removing and venting internal Process Gas and Purge N2 Gas.


PROCESS LINE

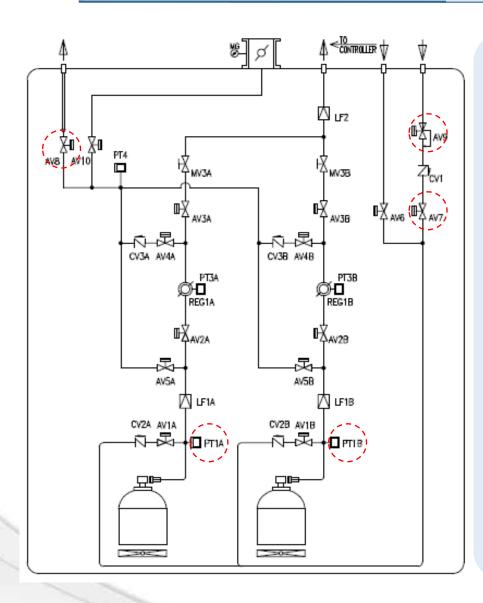
PURGE N2 LINE

VENT LINE

11-1. Function of Each Component

- **AV1A/B : Final Purge Gas Isolation Valve**This pneumatic valve finally isolates and supplies the N2 to purge gas line for gas cylinder change.
- **AV2A/B**: Process Gas Supply Isolation Valve

 This pneumatic valve controls the first isolation of supply process gas from gas cylinder.
- **AV3A/B**: Process Gas Delivery Isolation Valve


 This pneumatic valve isolate the final supply of process
 gas after regulator.
- **AV4A/B**: Process Gas Delivery Vent Valve

 This pneumatic valve permits flow out from the portion of the panel after regulator to vent.
- **AV5A/B : Process Gas Supply Vent Valve**This pneumatic valve permits flow out from process gas and Purge N2 to vent.
- **AV6 : Helium Leak Check Supply/Isolation Valve**To supply/isolate He gas to perform pressure leak check.

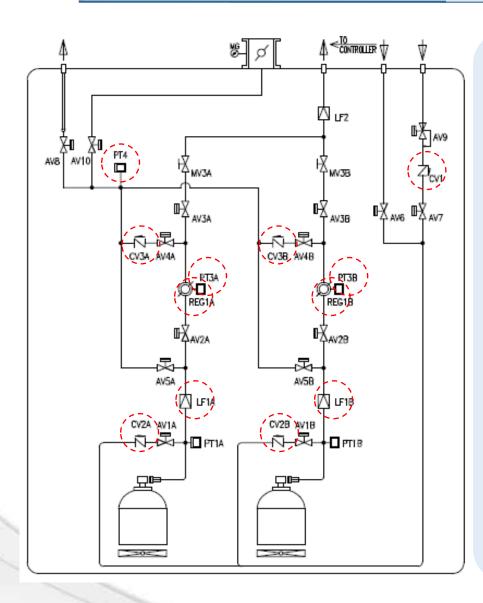
11-2. Function of Each Component

AV7: Initial Purge Gas Supply/Isolation Valve

This pneumatic valve initially isolates and supplies the N2 to purge gas line from N2 utility line.

AV8: Vacuum Pump Vent Valve

This pneumatic valve isolates and allows to vent process gas or purged gas by Vacuum Pump.


AV9 : Purge Gas Bleed Valve

This pneumatic valve is used to provide a trickle purge from an open pigtail connection during cylinder change. The valve has a small orifice which allows a continuous flow of purge gas when it is closed and AV1A/B and AV7.

PT1A/B : Supply Pressure Transducer

This transducer measures the real pressure of process gas supply. It makes a possible to display vacuum and pressure leak check condition on the touch screen.

11-3. Function of Each Component

PT3A/B: Delivery Pressure Transducer

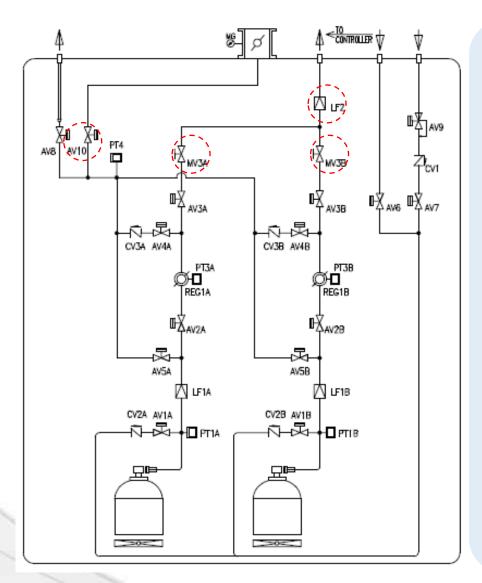
This transducer measures the real pressure of process gas delivery. It makes a possible to display vacuum and pressure leak check condition on the touch screen.

PT4: Vacuum Pressure Transducer

During purging, this transducer measures the processing status of vacuum pump to vent.

REG1A/B: Regulator

This regulator controls the pressure of the process gas to the process line.


CV1/2/3: Check Valve

Check valve protects parts damage and accident by backward gas flow.

■ LF1A/B: Line Filter

This initial filter catches particles from outlet of gas cylinder and protects damage of valves and regulator by particle.

11-4. Function of Each Component

LF2: Final Line Filter

This final filter catches particle from initial line filters (LF1A/B) to delivery process gas to process line.

** MV3A/B : Process Gas Delivery Isolation Manual Valve

This valve is to isolate and deliver process gas

by manual at the final process line after Regulator.

It is also useful for maintenance purpose for the

double check.

AV10: Calibration Valve

This pneumatic valve is to perform zero calibration for pressure transducers inside of gas cabinet system to make a atmosphere condition.

12-1. Main Option Configuration

MAIN 옵션 설	정		B-AUS B
Gas Leak Shutdown	Exhaust Fail	PUMP TYPE	TVM
UVIR Sensor	Cabinet Door S/W	Vacuum Generator	AV5
Hi-Temp Sensor	Control Door S/₩	Pulse Vent	CV5
Excess Flow S/W	Weight	Valve Shutter	AV6
PT1 고압 Shutdown	Tare Weight	Auto Guard	MY10
Gas Leak Fault	NET Weight	Auto Damper	AV11
Heat Temp Fuse	Panel Heat	AV8/AV10 VENT	
Z-Purge Sensor	2'nd Heat	P 7	
Low Pneumatics	Jacket Heat	PT3 VACUUM CHECK	
SUB PLC	자동진행 Heating		
	NOT SELECT		

12-2. Gas / Gas Cabinet Configuration

	ş	가스	사임	퇏 설	정					7	- (0)	I PR		ri ya	
A G	as Na	a∎e?			[ABC	DEFGH	J 1								
B C	heck	ing T	i∎e	설점?				DX	동진	행 Va	cuu	순서성	설정?	Γ	111
		hecki			-	123.0		1. 2.		-> AV -> AV		> AV1	>	AVII	
Pres	sure	Chec	cking	Tile	e? [123.0)]초								
CA	V8/AV	/4 VE	NT T	INE &	설점?			E 현재 시간 설정 ?							
AV8/	AV4	VENT	간격		I	123]	분	현재	시간	20	**년*	*월 *	**일 >	·*人 *	**분
AV8/	AV4	VENT.	Al OP	EN T	ME[23.0]	초	설정.	시간	12	34년1	2월 -	12일 -	12A 1	[2분
1	2	3	4	5	6	7	8	9	0	%	+	2	\$	CLR	ESC
A	В	С	D	Е	F	G	H	1	J	K	L	М	1	BS	ESC
а.	b	С	d	е	f	g	h	1	j	k	1	m	17.	•	*
N	0	Р	Q	R	S	I	U	V	W	Х	γ	Z	•	•	•
n	0	р	q	r	60	t	u	٧	w	×	y	Z		ENT	

12-3. Purge Configuration 1-A

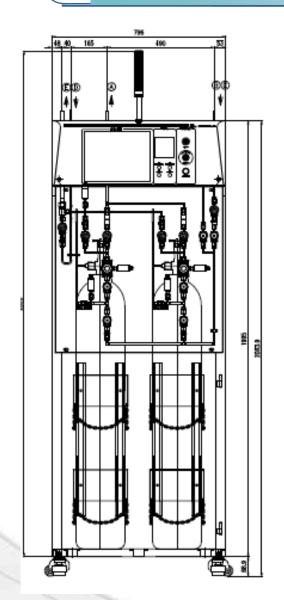
설정모드1-A	
20**/**/**-**:**	
교환전 1차 배관청소 [1234]회 10 감압	시험 시간 [1234]분
② 교환전REG' 배관청소 [1234]회 111 질소	공급 하한치 [1234] PS I
③ 교환전 2차 배관청소 [1234]회 12 감압	시험 안정시간 [1234]분
4 교환후 1차 배관청소 [1234]회 18 가압	시험 안정시간 [1234]분
5 교환후 2차 배관청소 [1234]회 ⁺ 14 누출	압력 변환치 [1234]PSI
👸 가압시험 상한치 [1234] PSI 🎁 PLUS	E VENT 횟수 [1234]회
7 가압시험 하한치 [1234]PSI 16 PLUS	E VENT RANGE [-1234]PSI
8 진공상태 하한치 [-1234]PSI	PURGE 진행 [1234]회
③ 가압시험 시간 [1234]분 비밀번호	호를 입력하세요 [****]
1 2 3 4 5 - BS	CLR ENT ESC
6 7 8 9 0	ENI ESC

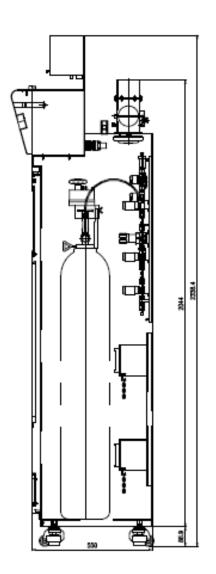
12-4. Alarm Level Configuration 2-A

설 정 모	<u></u> 2-A	
11 PT1A 고압	[-1234] PS I	III PANEL HEAT 고온 [12]℃
2 PT1A 1차 저압	[-1234] PS I	12 PANEL HEAT 설정 [12]℃
8 PT1A 2차 자압	[-1234] PS I	13 PANEL HEAT 저온 [12]℃
4 PT3A 2차 고압	[-123.0] PS I	14 JACKET HEAT 고몬 [12]℃
5 PT3A 1차 고압	[-123.0] PS I	15 JACKET HEAT 설정 [12]℃
6 PT3A 1차 저압	[-123.0] PS I	[12]℃
7 PT3A 2차 저압	[=123.0] PS I	17 2차배관 HEAT 고몬 [12]℃
🖁 무게 1차 경고	[123.0] Kg	18 2차배관 HEAT 설정 [12]℃
🔋 무게 2차 경고	[123.0] Kg	[2차배관 HEAT 저온 [12]℃
10 TARE ¶eight	[123,4]Kg	20
		비밀번호를 입력하세요 [****]
1 2 3	4 5	- BS A CLR ENT ESC
6 7 8	9 0	ENT ESC

12-5. Calibration

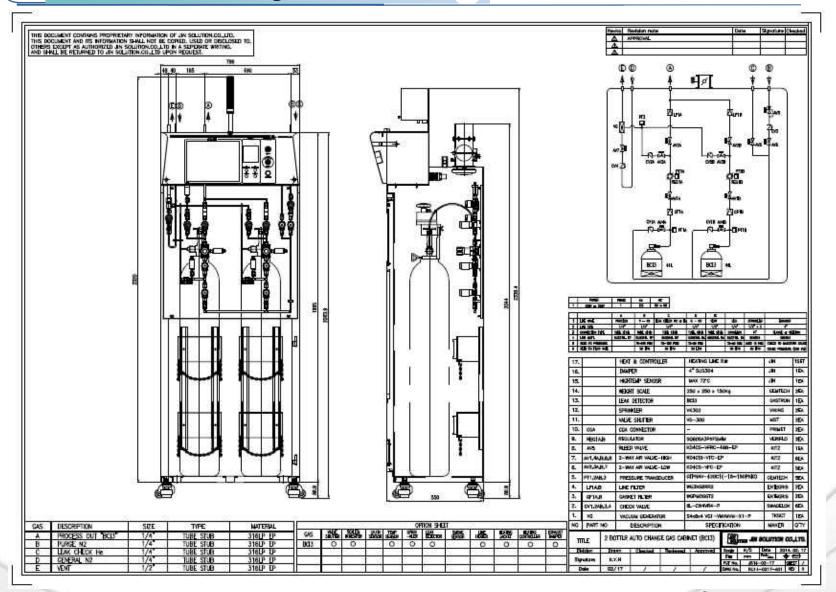
SOLUTIO	» 조	정 모 드	– A 20*	*/**/**-**:**
	최대값	Analog값	DISPLAY	0FFSET
PT1A	1234 psi	12.34	-1234 psi	-123 psi
РТЗА	123.0 PSI	12.34	-123.4 PSI	-12.0 PSI
PT4	1234 psi	12.34	-1234 PSI	-123 psi
₩ZIA	123.0 ка	12.34	-123.4 кg	-12.0 кg
6	2 3 4 7 8 9	5 -	BS A CL	ENT ESC


12-6. Major Part Lifetime Warning


SOLUTIO	N	EA	RLY	WARN	IIN	G SYS	STEM			
Valve	설전	횟수	전	행횟수		Valve	설정횟	수	진행	원수 -
Y/S A	-1234	15678	-123	145678		V/S B	-123456	78	-12845	678
AVIA	-1234	15678	-126	45678		AVIB	-123456	78	-12345	678
AV2A_	-1234	15678	-123	145678		A¥2	-123456	78	-12345	678
AV3A	-1234	15678	-128	145678		AVSB	-123456	78	-12845	678
AV4A	-1234	15678	-123	145678		A V 4B	-123456	78	-12345	678
AV5A	-1234	15678	-126	45678	+	AVSA	-123456	78	-12345	678
AVIIA	-1284	15678	-128	145678		AVIIB	-123456	78	-12345	678
446	-1234	15678	-128	145678		448	-123456	78	-12345	678
AV7	-1284	15678	-123	145678		AV7	-123456	78	-12945	678
AV9	=1234	15678	-126	45678						
									[**	***
1	2	3	4	5	=	BS	•	CLR	ENT	ESC
6	7	8	9	0		4	1		ENT	ESU

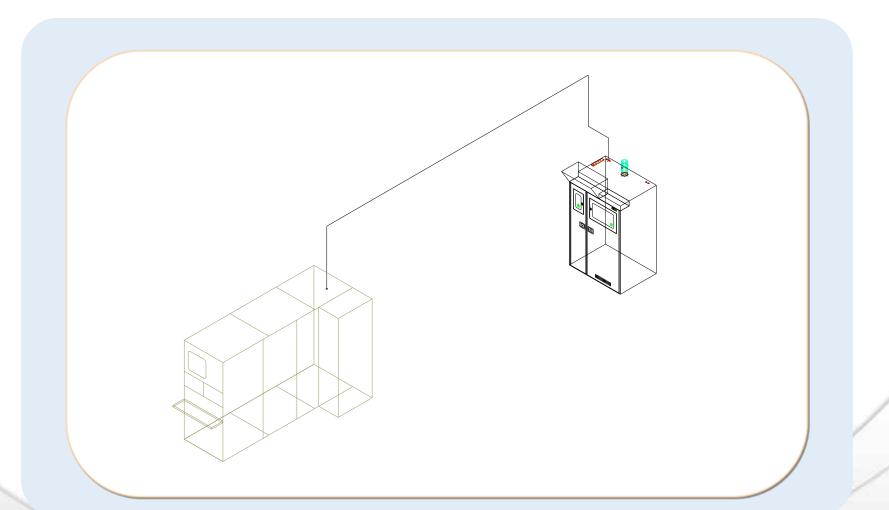
12-7. Pressure Transducer QC Mode

SOLUTION		QC MOD				
T/V 81	emi 49	30 10 10 10		# 10	* 8	[****
20**/**/	**-**:**:*	t *	*	12.04	Interval	Time[12]Hou
	PT1A	РТЗА	PT1B	РТ3В	PT4	일 - 시:분 : 초
현재압력	-1234	-123.4	-1234	-123.4	-1234	** - ** (** (**
1	-1234	-123.4	-1234	-123.4	-1234	** - **; **; **
2	-1234	-123.4	-1234	-123.4	=1234	** - **; **;**
3	-1234	-123.4	-1234	-123.4	-1234	** - **; **; **
4	-1234	-123.4	-1234	-123.4	-1234	** - ** ; ** ; **
5	-1234	-123.4	-1234	-123.4	-1234	** - **; **;**
6	-1234	-123.4	-1234	-123.4	=1234	** - **; **;**
7	-1234	-123.4	-1234	-123.4	-1234	** - **; **; **
8	-1234	-123.4	-1234	-123.4	-1234	** - **; **;**
9	-1234	-123.4	-1234	-123.4	-1234	** - **; **; **
10	-1234	-123.4	-1234	-123.4	-1234	** - ** ** **


13-1. External Drawing

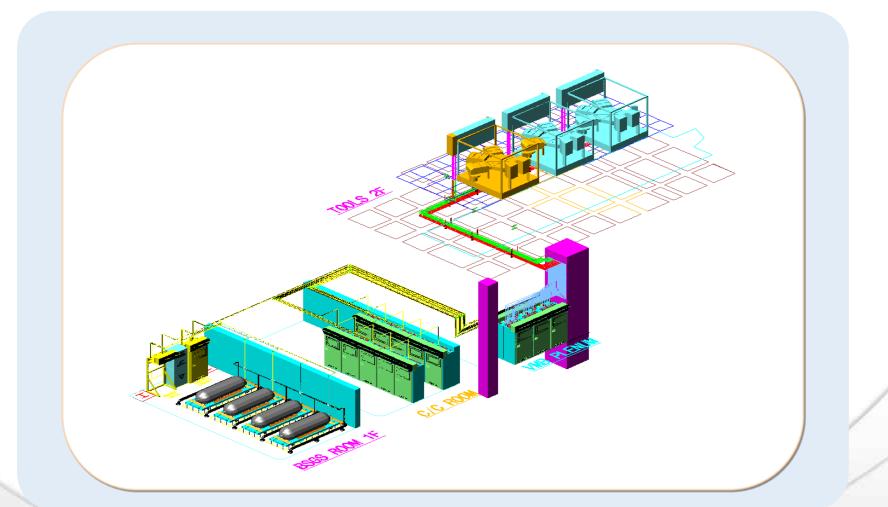
13-2. External Drawing

14-1. Gas Characteristics Table


No	Name of Gas	Chemical	Molecular Weight	Specific Grative	Toxicity (TLV)	Flammablity Range	State	Divide Group	Hazards Gas	System Type
1	Ammonia	NH ₃	17.03	0.597	25 ppm	16-25 %	Liquid	C,F	Yes	Cabinet
2	Argon	Ar	39.95	1.38	Asphyxiant	Non Flammable	Compress	I	No	Cabinet & Rack
3	Arsine	AsH ₃	77.95	2.695	0.05 ppm	Not Established	Liquid	T , F	Yes	Cabinet
4	Boron Trichloride	BCl ₃	117.17	4.05	(1 ppm)	Non Flammable	Liquid	С	Yes	Cabinet
5	Boron Trifluoride	BF ₃	67.31	2.37	1 ppm	Non Flammable	Compress	T , C	Yes	Cabinet
6	Carbon Dioxide	CO ₂	44.01	1.521	5000 ppm	Non Flammable	Compress	I	No	Cabinet & Rack
7	Carbon Monoxide	СО	28.01	0.968	50 ppm	12.5-74 %	Compress	T , F	Yes	Cabinet
8	Chlorine	Cl ₂	70.91	2.49	0.5 ppm	Combustion	Liquid	T, C	Yes	Cabinet
9	Chlorine Trifluoride	ClF ₃	92.45	3.14	0.1 ppm	Corr./Oxidizing	Liquid	T, C, O	Yes	Cabinet
10	Diborane	B_2H_6	27.67	0.95	0.1 ppm	0.8-98 %	Compress	T , F	Yes	Cabinet
11	Dichlorosilane	SiH ₂ Cl ₂	100.99	3.48	Not Established	4.1-98.8 %	Liquid	T,F,C	Yes	Cabinet
12	Disilane	Si_2H_6	62.22	2.38	Not Established	30℃ at 2.5%	Liquid	T , F	Yes	Cabinet
13	Fluorine	\mathbf{F}_2	37.997	1.696	1 ppm	Poison/Oxidizing	Compress	T , F	Yes	Cabinet
14	Germane	GeH ₄	76.62	2.66	0.2 ppm	Unknow	Compress	T , F	Yes	Cabinet
15	Halocarbon 11	CCl ₃ F	137.7	5.04	1000 ppm	Non Flammable	Liquid	I	No	Cabinet & Rack
16	Halocarbon 12	CCl ₂ F ₂	120.91	4.2	1000 ppm	Non Flammable	Liquid	I	No	Cabinet & Rack
17	Halocarbon 13	CCIF ₃	104.46	3.8	Not Established	Non Flammable	Liquid	I	No	Cabinet & Rack
18	Halocarbon 14	CF ₄	88	3.038	Not Established	Non Flammable	Compress	I	No	Cabinet & Rack
19	Halocarbon 23	CHF ₃	70.01	2.43	Not Established	Non Flammable	Liquid	I	No	Cabinet & Rack
20	Difluomethane	CH_2F_2	52	1.79	Not Established	13.3-29.3%	Liquid	T	Yes	Cabinet
21	Halocarbon 116	C_2F_6	138.01	4.773	Not Established	Non Flammable	Liquid	I	No	Cabinet & Rack
22	Halocarbon C-318	C_4F_8	200.03	7.33	Not Established	Non Flammable	Liquid	I	No	Cabinet & Rack
23	Helium	He	4.003	0.138	Asphyxiant	Non Flammable	Compress	I	No	Cabinet & Rack
24	Haxafluoropropylene	C_3F_6	150.03	1.583	Not Established	Non Flammable	Liquid	I	No	Cabinet & Rack
25	Hydrogen	\mathbf{H}_2	2.016	0.0696	Asphyxiant	4-75 %	Compress	F	Yes	Cabinet

14-2. Gas Characteristics Table

No	Name of Gas	Chemical	Molecular Weight	Specific Grative	Toxicity (TLV)	Flammablity Range	State	Divide Group	Hazards Gas	System Type
26	Hydrogen Bromide	HBr	80.92	2.7	3 ppm	Non Flammable	Liquid	T, C	Yes	Cabinet
27	Hydrogen Chloride	HCl	36.46	1.268	5 ppm	Non Flammable	Liquid	C , T	Yes	Cabinet
28	Hydrogen Fluoride	HF	20.01	1.27	3 ppm	Non Flammable	Liquid	T, C	Yes	Cabinet
29	Hydrogen Fluoride	H ₂ Se	80.976	2	0.05 ppm	Not Established	Liquid	T , F	Yes	Cabinet
30	Isobutylene	C_4H_8	56.11	1.997	Not Established	1.8-9.6 %	Compress	F	Yes	Cabinet
31	Kryption	Kr	83.8	2.899	Asphyxiant	Non Flammable	Compress	I	No	Cabinet & Rack
32	Methane	CH ₄	16.04	0.55	Asphyxiant	5-15 %	Compress	F	Yes	Cabinet
33	Methyl Fluoride	CH ₃ F	34.03	1.195	Not Established	Not Established	Liquid	F	Yes	Cabinet
34	Neon	Ne	20.18	0.696	Asphyxiant	Non Flammable	Compress	I	No	Cabinet & Rack
35	Nitric Oxide	NO	30.01	1.04	25 ppm	Oxidizing	Compress	T ,O	Yes	Cabinet
36	Nitrogen	N_2	28.01	0.967	Asphyxiant	Non Flammable	Compress	I	No	Cabinet & Rack
37	Nitrogen Trifluoride	NF ₃	71	1.537	10 ppm	Oxidizing	Compress	T ,0	Yes	Cabinet
38	Nitrous Oxide	N_2O	44.01	1.53	Not Established	Oxidizing	Liquid	0	No	Cabinet & Rack
39	Oxygen	O_2	32	1.105	Not Established	Oxidizing	Compress	I	No	Cabinet & Rack
40	Perfluoropropane	C_3F_8	188.02	6.683	Not Established	Non Flammable	Liquid	I	No	Cabinet & Rack
41	Phosphine	PH_3	34	1.184	0.3 ppm	Flammable	Compress	T , F	Yes	Cabinet
42	Propane	C_3H_8	44.1	1.55	Asphyxiant	2.1-9.5 %	Compress	F	Yes	Cabinet
43	Propylene	C_3H_6	42.08	1.476	Asphyxiant	2.4-11.1 %	Compress	F	Yes	Cabinet
44	Silane	SiH ₄	32.12	1.114	5 ppm	Flammable	Compress	F,T	Yes	Cabinet
45	Silicon Tetrachloride	SiCl ₄	169.9	5.9	0.5 ppm	Corrosive	Liquid	C , T	Yes	Cabinet
46	Silicon Tetrafluoride	SiF ₄	104.08	3.7	0.5 ppm	Non Flammable	Compress	T, C	Yes	Cabinet
47	Sulfur Hexafluoride	SF ₆	146.05	5.114	1000 ppm	Non Flammable	Liquid	I	No	Cabinet & Rack
48	Tungsten Hexafluoride	WF ₆	297.84	10.29	Not Established	Corrosive	Liquid	C , T	Yes	Cabinet
49	Xenon	Xe	131.3	4.56	Asphyxiant	Non Flammable	Compress	I	No	Cabinet & Rack
* Notes : C : 0	Corrosive F: Flammable	O: Oxidizer	T: Toxic P:	Pyrophoric I:	Inert					


15-1. Gas Cabinet Application Way 1

■ Gas Cabinet System → Main Tool

15-2. Gas Cabinet Application Way 2

■ Gas Cabinet System → VMB → Main Tool

15-3. Gas Cabinet Installed Image

